
HW 3 SOLUTIONS
Problem 1First we show that if we have no time-dependent onstraints (i.e. ri = ri(q1; : : : ; qk)where i labels the di�erent partiles in the system) then T is a quadrati fun-tion of the _qk's. Note that we make no laim about the dependene of T onthe qk. As always, summation over repeated indies is implied. First we haveT = 12mi _ri � _ri = 12mi �ri�qk � �ri�qj _qk _qj (1)by the hain rule. Then notiing that, sine ri = ri(q1; : : : ; qk) we also have�ri�qj = �ri�qj (q1; : : : ; qk), we see that T is a quadrati (degree two) funtion ofthe _qk's.That being the ase, we havepl _ql = �L� _ql _ql = 12mi _ql �ri�qk � �ri�qj ( _qkÆjl + _qjÆkl) = mi �ri�qk � �ri�qj _qk _qj = 2T (2)so H = pkqk � L = 2T � (T � V ) = T + V = E (3)Problem 2a)Sine y = f(x) we have by the hain rule _y = _xf 0 so T = 12m( _x2 + _y2) =12m _x2(1 + f 02) and thus L = 12m _x2(1 + f 02)�mgf (4)so �L�x = m _x2f 00 �mgf 0 (5)�L� _x = m _x(1 + f 02) (6)ddt �L� _x = m�x(1 + f 02) + 2m _x2f 00f 0 (7)1



and thus our EOM ism�x(1 + f 02) +m _x2f 00f 0 +mgf 0 = 0b)Assuming that the partile has no KE at the top of the wire, we haveH = mgf(0) = mgf(x) + 12m _x2(1 + f 02) (9)so solving for _x yields _x = s2g(f(0)� f(x))1 + f 02) � = Z �0 dt = Z 10 dtdxdx = Z 10 1_xdx (11)so h(x) = r 1+f 022g(f(0)�f(x)) .Problem 3We have L = m2 ( _r2 + r2 _�2)� V (r) (12)so p� = mr2 _� � J (13)where J is a onstant sine �L�� = 0 . Thus_� = Jmr2 (14)and we an try plugging this into our old Lagrangian to get a new LagrangianL0 = m2 _r2 + J22mr2 � V (r) (15)One easily �nds the E-L equation for r to bem�r = �dVdr � J2mr3 (16)
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whih does not agree with eqn. 1.77 in the text. Instead, if we onsider theRouthianR = R(r; _r; �; _� = Jmr2 ) = L� p� _q� (17)= m2 _r2 + J22mr2 � V (r)� J Jmr2 (18)= m2 _r2 � J22mr2 � V (r) (19)then our E-L eqn is �r = �dVdr + J2mr3 (20)as desired.Problem 4Given a urve (t) = (r(t)os�(t); r(t)sin�(t)), t 2 [0; 1℄, one easily omputesthat _2 = _r2 + r2 _�2: (21)We then onsider the integralA = Z 10 _2dt = Z 10 ( _r2 + r2 _�2)dt (22)This is of ourse not quite the same as the length integral L (whih wouldhave the integrand in a square root) but one an show that the ODE obtainedfrom A yields the same paths one would get from L but with the additionalonstraint that _ be onstant. So we apply our variational priniples to Aand get the following two oupled ODE, whih just say (in polar oordinates)that  should be a zero aeleration path:�r � r _�2 = 0 (23)ddt(r2 _�) = 0 (24)The seond equation above an be integrated trivially to getr2 _� = k (25)3



where k is a onstant. Noting that the urve we seek passes through theorigin (r = 0), we see from (25) that, in our ase (but ertainly not inothers), k = 0. Then, again from (25), we see that for r 6= 0 we have _� = 0so (23) tells us that �r = 0 and hene(t) = (atos(�0); atsin(�0)): (26)where a, �0 are onstants. Demanding that (1) = (1; 1) �xes a and �0,yielding (t) = (t; t) (27)Problem 5a) Sine we are taking the positive x-diretion to be downwards and we aretaking x=0 at the top of the path, onservation of energy reads12mv2 = mgx (28)or v = q2gx (29)and this ombined with dsdx = p1 + y02 yields for the time TT [y(x)℄ = Z x1x0 1p2gxq1 + y02 (30)whih gives the eqn 2.76 from the text when multiplied on both sides by p2g.b)The integrand in T is L = L(y; y0; x) = s1 + y02x (31)so sine �L�y = 0 we have �L�y0 = y0qx(1 + y02) = pr (32)where r is a onstant. This an be solved to givey0 = s xr1� xr (33)4



whih an be integrated by parts to yield, with the ondition x(0)=0,y(x) = � 12prqx(1� rx) + 12rsin�1(prx) (34)whih di�ers slightly from eqn. 2.77 in the text.
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